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ABSTRACT

We present techniques for feature recognition on smalldsodsing camera imagery, specifically
with the aim of matching acquired features against a prstiegj catalog of general landmarks.
This recognition capability is a necessary input to the gation filter and is also of use in reac-
quiring areas of scientific interest for further examinatar for sample return. We describe the
feature detection mechanism and the descriptors usedntfidégeatures as well as various tech-
niques to enhance invariance properties under imagingitomnsllikely to be encountered during

a small body mission. We also describe additional compusanivproducts of use to a small body
mission which fit within the feature detection framework.



1 Introduction

The image processing work in support of this R&TD task ultielacenters on generating the
landmark table (LMT) and auxiliary landmark table (LMTX)rfeach image of the target body
acquired by the spacecraft usigeneral landmarks. We describe in detail (1) the identification
of candidate landmarks, (2) their image localization, \whiorresponds to the bearing anglgs
andzs in LMT, and (3) the feature descriptods recorded in LMTX and used to match candidate
features against their descriptais in the feature catalog (FCAT). A superset of those features
identified as landmarks can be used in the paired feature (BBIT) and auxiliary paired feature
table (PFTX) for frame to frame motion estimation. Altefaaly, simple feature tracking inde-
pendent of the general landmarks may be used. The lattetigraughly understood technique
which, depending on extent of motion, can be performed atorfdamerate (30Hz) or faster. In
the following, we focus exclusively on the general landnsarked to populate LMT and LMTX.

Past work on landmark identification and matching has fatumse geometric primitives in
image data, which can be reliably parameterized by a simpigéem In particular, the Machine
Vision Group has done extensive work on identification antchiag of craters[1], which appear
as ellipses in imagery. Information on sun angle and shagirenomena is used to make the
resulting product largely insensitive to lighting condiis. While this crater detection work has
been very successful, it's applicability is limited to besliwvith well-defined (i.e. uneroded) craters.
In cases where craters are more jagged or where no cratgreeasnt, it cannot be used. Since the
likely target of future small body missions will include $uabjects, some attempt must be made
to address this deficiency. Possibilities include widenhegset of geometric primitives or using
differential (curvature, locations of cusps, etc) and togial information on curves and curve
intersection.

However, it is still possible that an unexplored small bodlyfitnone of the requirements for a
specific model-based landmark. It then becomes essentiavieElop a type ofleneral landmark
that is model-free and depends only on local image inforonafl he algorithm we describe below
is based on the notion of selecting features automatical§ome optimal scale and is adapted
from David Lowe’s[2] scale invariant feature tracking ($)Falgorithm. In a broad sense, this is
a generalization of Harris corner features[3]. We find pouwiftinterest in scale space[4], a stack
of band-pass filtered copies of an image, and record oriegtadient information in the scale
neighborhood of a selected feature. The interest pointrhesca candidate landmark, and the
gradient information becomes the basis for a recognizasergptor.

The descriptord; in LMTX, is compared to FCAT. If a matching. is found, then the land-
mark is considered identified. If not, the new landmark may$ed to update FCAT. In general,
FCAT should satisfy the following requirements.

1. It must be dynamically updated to admit newly identifieadiaarks.
2. It must be efficiently organized for easy search.

3. It must be insensitive to changes in viewpoint, scale Bnchination.

The update mechanism and efficient organization of theamialll be topics of future work,
and we assume in the following that a catalog has already peemated. Much of our focus for
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the current year has been on algorithm development addgetise item 3 above. Model-based
approaches are inherently viewpoint and scale invariaijest to the geometry of the primitives
used. In the case of craters, the projective invariants oiccgections are well understood, and
the explicit modeling of lighting angle affords a degree lafmination invariance. In the case
of general landmarks, scale invariance is built into thecdptor selection mechanism, as is a
certain amount of viewpoint invariance. We will describeletail efforts to address viewpoint and
illumination invariance.

Using image data, we are able to supply information beyoadtitication of landmarks in the
catalog. Given knowledge of 3D locations of landmarks, we alao extract from a single frame
(subject to image and map noise) the 6 DOF position and a¢titf the camera with respect to
the body. While this information may be of use as a sanity kHec the state estimator, it is
immediately relevant from a vision standpoint as a meanssimfgugeometric rigidity to remove
false matches between LMT and FCAT. If 3D landmark locatiam@sunknown, we can use two or
more frames to recover 3D structure and relative cameraombgtween frames up to an unknown
scale. Extensive work has been done in computer vision setheecas.

We now describe general landmarks in some detail.

2 General Landmarks

General landmarks are image features that can be identdredsachanges in viewpoint, distance
to object and illumination conditions. In our case, theyrmsemodel based but are derived purely
from image data. The specific type of landmarks we considebased on David Lowe’s SIFT
features. Since the natural setting for these featuresls space, we begin with a brief overview
of the topic.

2.1 Scale Space

We omit much of the underlying theory of scale space and desonly some relevant aspects.

Details can be found in [4, 5]. Our goal is to find image feagurdiably across a variety of image

scales, corresponding to different distances betweendimei@ and object. Associated with any
feature in a given image is some inherent scale. In orderrtgeoe to the same feature in another
image with a different inherent scale, it is necessary toglaoth in the proper framework. Thus,

if I(x,y) is the gray value of an image at point, y), we consider

L.y ) = Gla.o) e 1ay) = [ [ Gl == ol icc
the convolution of the image with a Gaussian kei@ét, y, o) given by

1 2?4y

Glw.9,0) = 5oz exp(~

)

Given the same feature in imagésand [, at locationsp; = (z1,y1) andps = (z2,92),
respectively, we expect that there existando, such that local image properties bf(x1, y1, $1)

2mo?
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are similar to those of, (s, 32, 02) in appropriately sized neighborhoods centereghpandp,.
Intuitively, this means that modulo orientation and rescalthe same feature in two images differs
only by a Gaussian blur dependent on relative scale.

While L(z,y, o) is used to construct the descriptor for a feature, its imagation is actually
identified in a different space. Let

D(z,y,0) = L(z,y,ko) — L(z,y,0)

for some fixed choice of. This is clearly equivalent to convolution éfx, y) by a Difference of
Gaussians (DoG). Features correspond to extrema in this8mdiional spac®(z,y, o). There
are several ways to interpret this choice. The collectioW(f, y, o) for all o can be considered
a collection of bandpass filtered copies of the image, wkerentrols the size of the pass band.
If a feature (defined as an extremal valuelinat some spatial frequency) is identified in one
image, the corresponding point viewed at a different seakedifferent image should also exhibit
an extremum at its optimal spatial frequency. An explicdrsé in D will find all points which
exhibit this behavior.

Alternatively, it can be shown that the DoG approximatesstele normalized Laplacian of
Gaussian (nLoGy?V G ask — 1. This terms approaches the derivativetofvith respect tas.
The explicit connection betwee@% to the nLoG is made via a partial differential equation samil
to the heat diffusion equation, but parametrized-liather than time. Details can be found in [2].
The extrema of the nLoG has been shown empirically to be destédss of scale invariant image
feature[6] under various geometric transformation. TheraximationD to the nLoG as used by
Lowe has the advantage of simplifying some of the later cdatmns.

2.2 Summary of algorithm

As mentioned above, our features correspond to extremadfifitretized DoG spade(x, y, o)
with separation defined by. Once a feature is identified, we sample gradient data onianted
patch in the corresponding slice bfx, y, o) (i.e. with the same as the detected feature) of scale
space centered on the feature. This forms the basis for éierées scale invariant descriptor.

2.2.1 Detailsof Feature Detection

We base our implementation on the algorithm overview in Lsyaper[2] and refer the reader to
that paper for more detail. We also describe our own taskifspawodifications to the algorithm.
Images scale&(z, y, o) are computed for

n
O':]{?O'O

wheres, represents an initial smoothing of the images the fixed constant described above, and
n ranges over integers from 0 to some maximum. For computgtigfficiency, both in creation
of the scales and in eventual determination of the featusergeors, the scale space is organized
into octaves. Within each octave are a fixed number fsay steps with the combination gfand

k chosen so that = 2'//. This implies that from one octave to the next, the changeaitess

= (21/f)f —9
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Figure 1:Diagrammatic representation of scale spaA@nd DoG spac#®. Successive octaves are formed
in L by resampling. Features are detectedirand their descriptors are formed from the corresponding
scale slice inL.

However, a scale change franto 20 can be approximated by a factor of 2 smooth resampling
of L(x,y, o). Thus,L(z,y,20) is constructed with spatial dimensions half the sizé. of, y, o).
This has the advantage of (1) requiring explicit computatsd Gaussian convolutions for only
the first scale, and (2) reducing the size of the scale spautee sach octave requires a fourth
the storage of the preceding octave. This pyramidal stradr the scale space has a natural
simplifying implication for the construction of the feagudescriptor. Since succeeding octaves are
smaller, the feature patch used to compute a descriptore&eft a fixed size throughout while
still covering relevantimage data. In effect, the desoriptindow (always a fixed size) of a feature
viewed from close will have the same information content@stindow of a feature viewed from
far, since the close object will be resized to something @ggiting the distant object for some
appropriate scale.

Once the scale space is computed, we complite y, o) by differencing adjacent steps of the
scale space. These ideas are illustrated in graphical fofigi 1, which is adapted from [2]. The
only problem occurs at boundaries of octaves, where the sizthe first step of a given octave
and the last step of the preceding octave do not match. We sy simply by resampling the
larger of the two steps. We show an example of both, y, o) andD(z, y, o) for an image of the



Figure 2: Visualization of scale space (top row) and DoG space (bottmw) for an image of the Eros
asteroid. The largest images across each row representshectiave, the next largest the second, and the
smallest the third. In any given octave, each step from tefight adds a factor of Gaussian blur in the
scale space or a factor kfshift in pass band for the DoG space.

asteroid Eros in Fig. 2. We use only 3 steps in each of 3 octiavesasier visualization In our
construction above, there are 3 parameters that define #ite juace and DoG space. These are
the initial smoothind o), the number of octaves, and the number of steps per ocfav©bserve
that the choice of defines the scale separation/y- 2'/7.

Having computed the discrete difference of Gaussian spdeey, o), we perform an explicit
search for extrema by examining for each coordinatey, o) its 26 neighbors. Again, there is
a slight complication at octave boundaries because of m@ma image size. This is solved
either by resampling the image up or down by a factor of 2, acittumstance dictates. Once a
preliminary list of extrema is found, a series of tests maspérformed to eliminate those that are
poor candidates for feature matching.

Suppose an extremum of the DoG functibnis found at(a,b,v). The following tests are
employed:

e We threshold on the absolute value bfat (a,b,~). This tends to eliminate the largest
number of unstable features. Our current implementatioe@s only values above some
user-defined fraction of the median of valuedbét all extrema.

e We also suppress features in areas of low image variance. i kione be computing pix-
elwise image statistics at each scale and masking out regiblow variance. We must,
therefore, examine the image statisticddt, b, v) before accepting a point as a valid fea-
ture.

e Since the LoG, hence DoG, has a strong response to all edgaesed to eliminate “edge-
like” features in favor of “corner-like” features, sinceetformer is poorly localized. This



is in rough analogy to the Harris corner detector. The eigkems of the 2D Hessian matrix
H(2,y)|(z.y)=(ap) at(x,y,y)are the principle curvatures of the surface definedigy, v, )

at (a,b,v). If one principal curvatures differ greatly in magnituderfr the other, then the
candidate point likely belongs to an edge and is a poor cHoraefeature. A trick employed
by Lowe and borrowed from Harris is to compare the ratio @ft?, the square of the trace,
to det(H ), the determinant. If the eigenvaluesi@faree; ande, with e; = re,, then

tr(H)*  (e1+e2)®  (res+e)®  (r+1)°

det H  ejeq reg? oy
The left hand side achieves a minimum whenr= 1 and increases monotonically with
Hence, there is no need to compute eigenvalues explicitly.nééd only threshold on the
ratio on the left.

Finally, we fit each extremal poirt;, b, ) of D to a quadrati@) in (z,y, o) such that.

a+l b+l

= min Z Z Z |Q$ya D(a,b, )]

QeP2(ay.0) r=a—1y=b— 10—77

whereP,(z,y, o) is the space o2"¢ degree polynomials i, y, o). If Q achieves an extremum
at(x,, y,, 0,), we apply the following criteria.

e If (z,,y,) differs by more than one pixel froifa, b) or v differs by more than one step from
o,, the candidate is rejected.

e If (z,,y,) differs by less than one pixel but more than one-half pixefrfa, b) or - differs
by less than one step but more than one-half step frgnwe move the candidate in the
appropriate spatial and scale directions and refit the pohyal.

e If (z,,9,) Is within one-half pixel of(a,b) and o, within one-half scale ofy, we accept
(%0, Y0, 0,) @s the subpixel location of the feature. Finally, given themera model, these
pixel coordinates can be transformed into 3D coordinatetherCCD of the camera. From
this, the bearing angles, andz; reported in LMT (or PFT) can be obtainegl, andog in
LMT will be derived from combination of known sensor nois@ldhe quality of the subpixel
fit (i.e. the residual in fitting) to the data.)

2.2.2 Feature Descriptor

Once a feature is detected in the DoG space, we must develesaumtor for it that can be
recognized under changes in viewing condition and scale. descriptor appears in LMTX and
PFTX asd; for framei. A description of the procedure follows.

The feature descriptor is based on local gradient inforonadt optimal scale. Since we seek a
viewpointindependent solution, the first step is to elinterdependence on image orientation. This
is accomplished by computing a principal orientation acbaach feature point in the DoG space
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and reorienting the feature according to this informatibthe feature is found &, b, v), we poll
the 2 dimensional gradient @¥(x, y, ) near (a,b). LelM/ (z, y) be the magnitude and(z, y) the
orientation ofV, ,D. We construct an orientation histogram &fbins, each occupying60/N
degrees in the image plane as followsOlfz, y) is q degrees, then we roudN and add to the
corresponding bin in the orientation histogram the value

(x—a)’+ (y— 5)2)
2

M('Tv y) eXp(—

for some\. This is the magnitude of the gradient(at y) attenuated by a Gaussian centered at
(a,b). The choice ofA determines the radius aroutid, b) used to poll for the histogram. We
typically use a radius of « A\ and setV = 36, A = 3. The mode of the histogram then indicates
the local orientation of the feature. If the histogram is bdal with a second mode at least 80% as
large as the primary mode, then we record both orientatindsanstruct two features at the same
coordinate, one with each local orientation.

Given the orientation above, we rotate the region arountkthteire using bilinear interpolation
to a canonical orientation @f. The result is complete rotation invariance in the image@laip
to the orientation resolutiofy. The size of the neighborhood rotated is dependent on tlkeeo$iz
vector we use for the feature descriptor. We now descrilse thi

Since all features orientation can be rotated,td suffices to construct a descriptor based on
a grid aligned with the (locally re-oriented) image axesug,hassume without loss of generality
that the orientation of a feature ét, b,~) in the DoG space i8. We partitionD(z,y,~) in a
neighborhood ofa, b) with radiusR into a K x K grid. In each grid cell, we compute a histogram
of local orientations usind. bins per cell. This is done essentially as above for the ppéic
feature orientation, except that we do not attenuate théiggmamagnitudes by a Gaussian. The
L x K x K list of histogram values taken in some predefined order is the feature descriptor.
Typical values used arB = 8, L = 8, K = 4, for a 128 dimensional vector representing each
feature, using information from a 16 pixel x 16 pixel regi@ntered ata, b) in D(a,b,~). Data
a distance greater thag from (a, b) is ignored, producing a circular mask on the descriptor. See
Fig. 3 for a graphical representation, borrowed from Lowethes descriptor using the typical
parameters indicated above. This scheme affords a certgiree of shift invariance. Observe
that if the location of the feature shifts by a small amourdamy direction, there is relatively little
change in the histogram of any cell in the grid, since the nitgjof pixels contained in it remain
unaffected. Thus, small shifts due to viewpoint change @edsily accommodated.

Once the descriptor is computed and entered into LMTX, weparm to the list of feature
descriptors in FCAT. At the moment, we use a simple thresbalduclidean distance between
128 dimensional vectors as well as some geometric constidascribed below. We will eventually
use more sophisticated data structures to organize FCAgalsy search. The PCA version of the
algorithm (described below) places an inherent orgarinatistructure on the catalog, as we will
see.
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Figure 3:0n the left is a graphical representation of feature vedtbe length of each arrow corresponds
to the weight of a given orientation in each of the 4x4 gridscelhese concatenated lengths represent the
feature descriptor. On the right is an actual descriptoraplgical form from a feature on the Eros image in
Fig. 2

2.2.3 Invariance Propertiesand Limitations

By construction , the descriptors are invariant to Euclideentions of the image plane, at least up
to discretization. In other words, any combination of riatiatand translation of the image plane is
acceptable. The use of the scale space formalism adds seateance. Thus, any transformation
of the form

cos(6) sin(d)  t,
—sin(f)  cos(d) ¢,
0 1

0

applied to homogeneous image coordindtes, 1)” can be accommodated. For the small body
task at hand, there is a potentially wider range of imagestoamations. For successive frames
during orbit, the above is often a good approximation. He@veas viewpoints change dramatically

(possibly over multiple orbits), the transformation of iheage plane is poorly approximated by

the scaled 2D rigid motion above. In Fig. 4, we show matchesylts for adjacent frames and

for frames differing by one full orbit of the NEAR spacecrafound Eros. In both cases, there
is relatively little out of plane rotation. Thus, featureg successfully matched. In Fig. 5, we

illustrate scale invariance using imagery of the asteroatiMde taken by the NEAR spacecraft

during approach.

Another key issue is illumination invariance. In the exaegpthown in Fig. 4, illumination
conditions have changed somewhat in the image pair on the kgpwever, much larger variation
can be expected in general. In particular, imagery of objatspace tends to exhibit both high
contrast and dramatic contrast change as a function of eharntjumination direction. The algo-
rithm as it stands is largely incapable of handling suchatems in illumination. Even the imagery



Figure 4:Feature matches across adjacent frames and after onelfillbbNEAR spacecraft around Eros.

in Fig. 5 presented problems for the base algorithm.

One solution to both the viewpoint and illumination probtem to develop FCAT so that it
includes landmarks from the same area on the target viewstiliple illumination conditions
and from several directions and save all descriptors. Thegléescriptors in LMTX will match
landmarks from at least some iteration of the process. Tlag be possible in some mission
scenarios and impractical in other. For the latter case, wst still try to improve viewpoint and
illumination invariance for features. We describe ourmagés thus far below.

2.3 Addressing Viewpoint and Illumination I nvariance

We describe techniques to address the problems of out o ptdation and illumination change.
In a general setting, only image based information would hewn, and we explore this first.
However, if some state information is also known, more caemitally be done.

2.3.1 Image based solutions

We describe techniques to address the problems of out o ptaation and illumination change.
In a general setting, only image based information would hewn, and we explore this first.
However, if some state information is also known, more caemaally be done.

The base algorithm is not designed to handle large changéswpoint given objects with
highly 3 dimensional (i.e. nonplanar) structure in the gce®o we focus only on illumination in-
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Figure 5:Scale invariance is demonstrated by imagery of the Matlijdéne NEAR spacecraft. The same
image is used on the top half of each frame. The bottom half isnage of Mathilde at roughly double
(left) and half (right) this size.
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Bilateral bekernd. subtraction

Unprocessed ima ' Background subtraction

Figure 6:. Features for an image of Eros without preprocessing, withkbaverage background sub-
traction, and with bilateral background subtraction. Tihtemsity normalization of the two preprocessing
techniques often results in greater illumination invac@&n

variance using image based solutions. To a certain extentjge of the DoG space with inherent
frequency bandpasses limits the dependence of the datgltim§. Lowe makes a further ex-
plicit attempt to eliminate illumination dependence bynicating the orientation histograms used
to build the feature descriptor. A maximum is assigned fbbigls, and any bin that exceeds the
maximum is set to the maximum value. This is helpful in caskere saturation leads to very high
gradient values. However, it has little effect on more subtit equally destructive variations in
illumination, particularly with the high contrast imagemg are using. We have had some success
with preprocessing the image by background subtractiofs dimounts to subtracting from each
pixel the average gray value of a large (in our case 31) block centered on the pixel. f(x, y)

is the image, we replace with(x, y) given by

J(l’,y) = I(l‘,y) —[(l’,y) *F(l‘,y)

whereF is ann x n matrix with F(i, j) = 5. In some cases, we have had greater success with
bilateral background subtraction, in which a bilateragfilis used in place of a block average. If
Bf(I) is the filtered image, we use

to compute the scale space. The later (see [7] for detai®) isdge preserving smoother which
does a better job of maintaining useful texture informati@ar crater rims and other sharply
defined structures. We omit details and refer the readerd@#per cited above. The frames
in Fig. 5 were processed using bilateral background sulddrgcsince the raw imagery failed
to produce many matches. Either technique effectively qutes the construction of the scale
space and DoG with a highpass filter of the image. In Fig. 6, woevshe results of both block
average and bilateral background subtraction on an imageosf, as well as the features detected
with each subtraction method and on the raw image. Obsertlescase that while the bilateral
result reduces the overall number of features, they aredilpimore salient than those detected
otherwise.
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Figure 7:. a) Diagram showing use of sun angle for background sulatradh) Image of real crater from
Eros. c) Result of bilateral background subtraction. d)uRex bilateral background subtraction using sun
angle and thin rectangular window. Observe that more of thecinterior is usable in frame d)

2.3.2 Using State Information

FCAT is intended to contain information on sun anglg &pproximate viewing directiorvf and
approximate viewing distance). A simple but useful piece of information is the sun angle in
the image. If this is known, we can try to compensate for sheeféects in illumination direction.
Rather than the usual block average or bilateral backgreuhttaction, we use a thin filter window
oriented perpendicular to the sun direction. A simple tégpin is to rotate the image until the
sun angle is vertical and then to perform background sutidracising a thin rectangle aligned
horizontally. This averages over regions of highlight orkii@ss due to the interplay between 3D
structure and lighting, while minimizing any averaging ovegions of sharp lighting variation.
We illustrate the idea in Fig. 7 and show results for bildteeekground subtraction both with and
without knowledge of sun angle. Invariance to illuminatierone of two major challenges. The
other is invariance to viewpoint change. While the baserédlyo is quite insensitive to rotations
and shifts in the image plane, perspective distortion tegufrom camera motion in 3D is much
harder to accommodate. We have attempted to introduce aaletaffine invariance as follows. If
we know approximately the center of gravityof a roughly spherical body, the viewing direction
V' of the camera, and the positichof the camera in some inertial reference frame, we can attemp
to compensate for foreshortening effects. This is accahptl by compressing the image in a
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Figure 8: Proposed technique for reducing foreshortening effedts po calculating feature descriptor.
The image is stretched by a factor@k(6) in the direction corresponding to the projection of G-C athi
image plane

direction corresponding to the projection Gf— C, the vector from the camera to the center of
gravity of the body, onto the image plane by an amount depgndn the cosine of the angle
between the&? — C andV'. This is illustrated in Fig. 8 by a 2D sketch. The approaclobees a
more realistic approximation to the true perspective digto only as the curvature of the surface
approaches zero, in other words when the surface can bdyl@gairoximated by a plane and
G — C approaches the surface normal. This assumption may becaplgieven to small bodies
during close orbit or descent. However, our tests with impagé Eros were unsuccessful. We
suspect that the irregularity of the surface and the redbtitsigh orbits used in our test imagery
played a factor. This topic is explored further in Sect. 2.3.

Finally, we use multi-frame cues to increase the likelihobdhatches between images taken
at different viewpoints. If two features can be connecteduph a chain of images, they can be
matched even if their individual (i.e. single frame baseeldtiptors fail to match directly. This
is a simple case of a planned dynamic update scheme for th&,RC#hich the descriptor of a
feature is modified in some weighted average fashion asetisquired in successive frames.

We show the result of using both sun angle information foemtieéd background subtraction
and multi-frame cues in Fig??. Observe that while single frame-to-frame matches begfaito
quickly, the use of sun angle and multiple frames allows meg@cross much greater changes in
viewpoint and lighting. This is a good indication that a dgnaupdate of descriptors in the feature
catalog will increase match likelihood. Note that while wdyodisplay matches for every fourth
frame in Fig.??, we use information from intervening frames in the compatat

2.3.3 3D reconstruction and Epipolar constraint

Surface irregularity is relevant for two reasons. First,oaa use it to judge the applicability of the
foreshortening compensation described above. More fuadtalty, we can use it as a measure
of the quality of a landmark. This is applicable not only tomstyucting LMT and LMTX but to
populating FCAT. A feature in an area of high 3D structurentikely to be a stable landmark
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Matching Frame 42 to Matching Frame 42 to Matching Frame 42 to
Frame 46 Frame 50 Frame 54

frame-to-frame without sun angle

multi-frame with sun angle

Figure 9:We show matches for a short sequence of Eros images in whdalpeint and lighting conditions
change over time. In the top row, the base algorithm is usd¢itbwi information on sun angle and without
multi-frame cues. In the bottom row, we use both the sun aagtemulti-frame cues. Observe that in the
last frame (right), the base algorithm fails entirely white modified algorithm matches several features.
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under either viewpoint or illumination change. Fortungtele are able to compute 3D structure
up to scale from two adjacent views. Use use the matches fioUPHET to start the process.

Given two adjacent or nearby frames and a series of featutehewm supplied by the PFT,
we show how to reconstruct the surface and determine whathegion is a good candidate for
landmark placement. As part of the process, we will descénibeief the epipolar camera geometry
and its implications for matching features either in the PFbetween FCAT and LMT.

Given a set of point correspondences (such as that supplie&b) between two frames, there
is a constraint on the 3D location of the imaged points anot tikge coordinates. For any point
P in 3D, consider the plan! formed by that point and the projection center of the camera i
the two positions at which the two frames were taken, sayraddi; andt,. It can be shown that
the imaged point in either frame lies on the intersectio®bfvith the CCD at the time of image
capture. Lep; andp, be the 3D coordinates of the projected point on the CCD atsimandt,
in the coordinate frame of the camera. We can compute thestsiam image coordinates using
the camera model. Borrowing terminology from projectivemgetry, this is known as the epipolar
constraint. Supposg is expressed in the camera frame at tilmeln the absence of noise, there
exists a3times3 matrix I/, called the essential matrix, such that

piEp, =0

E is given by E = RTj,). This constraint captures the epipolar geometry in itsretyti Here
(R,T) is the Euclidean motion undergone by the camera frame battireet, andt,, and7j,, is

the skew symmetric matrix associated with cross produdt iye. for a vectow, Ti v = T x v).
Given a set of point correspondences, the relation abolesyaée(generally overdetermined) linear
system in the entries af/, which we can solve by various means such as singular valkcente
position. OnceF is known, it can be decomposed intbandT = «T, whereT has unit norm.
Without an additional constraint on scalecannot be determined. This is clear from the epipolar
constraint, since any rescaling 6f henceF, has no effect. We omit the details of this procedure
and refer the reader to [8]. Once the linear estimate of thigkomds obtained, we typically refine

it with a non-linear optimization that minimizes the re@cjon error to simultaneously solve for
motion and 3D structure.

The above computation not only gives us 3D reconstructiqrovides a quick way to check
for false matches between the descriptors in LMTX and FCAllsé matches arise from similar
descriptors for two features. However, the 3D location ofthfeatures and their projections are
generally inconsistent with the epipolar geometry. Thus,camputeF using subsets of the full
dataset and a robust technique such as RANSAC [9]. We thatk ¢he value ofp; Ep, for each
candidate match in either the PFT or between the LMT and FOAdentify outliers.

Once the relative motion is known, we can reconstruct theesggometry using stereo vision
techniques (see [8] for details). With this data, we can @allplane fitting to determine surface
normals and correct foreshortening. We can also get a gamksa the roughness of a region
independent of absolute scale by computing the local vegiam stereo range values. In Fig. 10
we show a synthetic, texture mapped scene, the resultimgg naap from applying the procedure
outlined above, and a roughness map computddgaef the range variance in & x 3 window
centered on each pixel. Note that areas with high 3D relietciarly visible and can be avoided
for both entry into the LMT and populating the FCAT.
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Figure 10:A synthetic scene, the range map computed from PFT and tpodsidescribed in Sect. 2.3.3,
and a roughness map computed from the range. The roughnese eesed to guide the selection of good
landmarks for viewpoint and illumination invariance.

2.4 Principal Component Analysis

Principal Component Analysis (PCA) is a technique for eotirey the most relevant subspace
for data distributed in a high dimensional vector spacehsascour feature descriptors. In brief,
we compute the eigendecomposition of the cross covariaatexnof the dataset and project the
data onto a basis consisting of the eigenvectors. Then the ratevant directions correspond
to the largest eigenvalues, and we can truncate the vegioesentation of the data in the new
basis without losing important information. Given an n dims@nal dataset and the normalized
eigenvectors, say;, e, ..., €,,, coOrresponding to the largest eigenvalues, we can project any
vectorv € R" into its most significantn components by’ = Pv, wherev’ € R™ and

€1
€2

€m

Following some recent work in the literature [10], we arditegsa PCA version of the feature
algorithm. Unlike the algorithm described above, the PGfodthm has two phases. The firstis a
computationally intensive training phase needed to determe projection matriX’. We expect
that this can be done offline on data collected by the spaiteord sent to Earth. The second is
actual feature detection and matching. We first describ&di@ng phase

We first collect information on a large set of features, gugver several orbits of the body.
The base algorithm proceeds as described above up to degioni of a principle orientation for
each feature. We then rotate a lafgex k& neighborhood of the detected feature in the correct
scale slice of the DoG space to set the principle orientaborero, again as above. Typically,
the neighborhood is greater in size thahx 30. Now we simply poll the gradient orientations
and magnitudes in this x k& window and concatenate them into a vector of dimensica 2k
for each feature. This is the dataset on which we perform RQl#serve that even for 20 x 30
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Figure 11:Plot of 100 largest eigenvalues using 31 x 31 (1922 dimeasiwaining features) window for
PCA algorithm.

window, the associated covariance matrix for which we neeatbteigenvalue decomposition has
dimensions 80021800. Since our only concern is some subset of the largest eigersjave can
use numerical techniques that avoid the full eigendecoitippsOur current implementation uses
the Matlab version of the Implicitly Restarted Arnoldi Meth We tested this method on an Eros
dataset. In Fig. 11 we show a plot the 100 largest eigenvalae® a3l x 31 window (i.e.

n = 1922 in the notation above) Observe that the rapid decrease goras evidence that as few
as 30 principal components are necessary.

After the projection matrix is computed from the training, seibsequent computation of fea-
tures descriptors is straightforward. We construct fohefaature the: = 2k original descriptor
as described and use the matfixcomputed during training to project it into a much smallds-su
space. In Fig. 12 we show matching results using the first @izl 50 principal components
as well as the result of the base algorithm without PCA. Nt tor the 30 and 50 dimensional
cases, performance is nearly identical to the non-PCA #lgor and actually show more valid
matches. The 10 dimensional case has many more outliersyenthere, the majority of matches
are correct, and most outliers will be removed after apglyhre geometric constraints described
in Sect. 2.3.3.

PCA has a number of advantages. It is a sparse representatiom most relevant data com-
ponents. This means not only less storage and a smaller FGipabentially less sensitivity to
image noise. Furthermore, since the data is naturally agenn terms of relevance (i.e. the nth
element of the feature descriptor corresponds to datagirojeonto the eigenvector of nth largest
eigenvalue), it follows that matching can be done much méirgently. Instead of a simple Eu-
clidean match, we can use a lexicographic approach thatsejeorrect matches after comparison
of just the first few elements of the descriptor. Howeverfgrenance will depend heavily on the
training set and how representative it is for subsequengénato be used for the LMT. If there is
significant bias in the training phase, performance may loe. po

We are also exploring the use of Independent Component 8isg\CA), a technique in which
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Figure 12:Matching results using a) the standard non-PCA algorithr?@A with 50 dimensions, c) PCA
with 30 dimensions, d) PCA with 10 dimensions.
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the basis decomposition of the original vector space is tbbaormal, but aligned more naturally
to the most relevant directions of information content. @ualuation of this technique is still in
the earliest stages.

3 Additional Vision Based Products

We describe in brief, some of the additional vision captibgdithat can be applied to small body
navigation. We start with the assumption that feature goamé matched between overlapping
frames or that landmarks have been identified in the catalog.

We have already described some of the 3D reconstructionimpebs available to us. Generally
speaking, scene reconstruction from two or more imagesumkimown camera motion is referred
to in computer vision as the Structure from Motion (SfM) deoh. There are many variants to the
E matrix technique already described, including multi-featechniques using a tensor constraint
on image coordinates of matched points. In general, monestalechniques incorporate a non-
linear optimization over the parameters of the relative@amotion, and possibly over the scene
structure. We cite one survey paper [11] covering someickgechniques.

If the 3D coordinates of data points are also known in somel fireme, localization of the
camera in that frame can be accomplished very accuratelyuircase, the 3D information is
contained in FCAT and the image information in LMT. GiveBD-2D point correspondences, the
problem of localizing the camera in the world coordinatefess known in computer vision as the
N-Point Pose problem. There is an extensive body of liteeabu this subject as well. We refer
the reader to [12] for an overview and numerous referencebid. 13, we show the localization
error for position estimation using synthetic datd @foints acquired by 80 degree field of view
camerab00m above a surface. We assumme= 0.5 pixel error in image feature localization and
error in map knowledge varying from = 0 to 0 = 10 meters. Recovered position error for
the camera is reported as absolute error in the body framg.id¢fthe true attitude angl. is the
recovered attitude, then the angle associated with, = ¢ 'qo is reported as the attitude error.
We ran this simulation over 100 trials using the noise leuadécated and report the RMS errors
in Fig. 13. The absolute position estimate (using FCAT andT.ldnd relative motion estimate
(using PFT) can be used as a sanity check for the state estimat

4 Conclusion and Future Work

Our adaptation of David Lowe’s SIFT work has shown someahjromise. We have produced
good matching results in relatively easy cases. Our ateat@nhancing the algorithm to handle
greater variation in viewpoint and lighting have met witmsoinitial success, but more work is
required. At present, we are focusing on PCA and ICA methodisaaticipate that these may
have better invariance properties in the small body setivigile the SIFT-like signature approach
is worth further study, we also intend to explore other aesnuThese include an extension of
the SIFT framework to 3D structures. Since we have SfM tegines in place, we may be able
to examine local 3D structure directly and develop featwscdptors based on both intensity
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Figure 13:Position and attitude error vs. errors in 3D map knowledgéeafures for simulated camera
500 meters from surface. s is the standard deviation of Gaussise added to each coordinate.

information and structure. We also intend to explore thgudesncy domain more directly than the
scale space formalism accomplishes to see if sighaturebeaomputed directly in this arena.
Another potentially productive area is the use of imagedi@mnation other than bandpass which
capture local scene structure. We have started experingewtth scaled entropy images as a first
step.
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